

11625

		 		,			
vi. i uz z	1 1						
Dog No	1 1		**				1 1
Reg. No.		. *			1		
_				1 4 4 4 7		1	

VI Semester B.A./B.Sc. Degree Examination, September - 2021 MATHEMATICS

(CBCS Semester Scheme Freshers & Repeaters 2016-17 and onwards)

Paper: VII

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer ALL questions.

PART-A

1. Answer any FIVE questions.

 $(5 \times 2 = 10)$

- a. If V(F) is a vector space over the field F, and 0 the zero vector of V, then prove that $a.0 = 0 \forall a \in F$.
- b. For what value of k the vectors $\{(-1,2,1), (3,0,-1), (-5,k,3)\}$ are linearly dependent.
- c. Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (4x+2y,6x-5y) with respect to standard bases.
- d. Define linear transformation of a vector space.
- e. Write scalar factors in spherical polar co-ordinate system.
- f. Solve: $\frac{dx}{y^2} = \frac{dy}{xz} = \frac{dz}{xy}$.
- g. Form a partial differential equation by eliminating constants from $z = a^2x^2 + b^2y^2$.
- h. Solve: $p = e^q$.

PART-B

Answer TWO full questions.

 $(2 \times 10 = 20)$

- 2. a. Prove that the intersection of any two subspaces of a vector space V(F) is also a subspace of V(F).
 - b. Find the dimension and basis of the subspace spanned by the vectors $\{(2,4,2),(1,-1,0),(1,2,1),(0,3,1)\}$ of $V_3(R)$.

(OR)

P.T.O.

- 3. a. Prove that the subset $W = \{(x_1, x_2, x_3) / x_1^2 + x_2^2 + x_3^2 \le 1\}$ of the vector space $V_3(R)$ is not a subspace of $V_3(R)$.
 - b. In an n dimensional vector space V(F) prove that
 - i. any (n+1) vectors of V are linearly dependent
 - ii. no set of (n-1) vector can span V.
- 4. a. Find the linear transformation $T:V_2(R) \to V_2(R)$ such that T(1,2) = (3,0) and T(2,1)=(1,2).
 - b. Find the matrix of the linear transformation $T:V_3(R) \to V_2(R)$ defined by T(x,y,z)=(x+y,2z-x) relative to the bases $B_1 = \{(1,0,-1),(1,1,1),(1,0,0)\}$ and $B_2 = \{(0,1),(1,0)\}$.

(OR)

- 5. a. If $T: U \to V$ is a linear transformation then prove that
 - i. Kernel N(T) is a subspace of U
 - ii. T is one one if and only if $N(T) = \{0\}$.
 - b. Find the range space, null space, rank nullity and hence verify rank nullity theorem for $T: V_3(R) \to V_2(R)$ defined by T(x,y,z) = (y-x,y-z).

PART-C

Answer any TWO full questions.

 $(2 \times 10 = 20)$

- 6. a. Verify the condition for integrability and solve $3x^2dx + 3y^2dy (x^3 + y^3 + e^{2z})dz = 0$.
 - b. Solve p(y-z) + q(z-x) = x y.

(OR)

- 7. a. Show that the cylindrical co ordinate system is orthogonal curvilinear co-ordinate system.
 - b. Express the vector $\vec{f} = yz\hat{i} 2x\hat{j} + y\hat{k}$ in cylindrical co-ordinates and find f_{ρ} , f_{φ} , f_{z} .
- 8. a. Solve : $\frac{dx}{mz ny} = \frac{dy}{nx lz} = \frac{dz}{ly mx}.$
 - b. Solve : $\frac{dx}{x^2 y^2 z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$.

(OR)

- 9. a. Express $\vec{f} = z\hat{i} 2x\hat{j} + y\hat{k}$ in spherical polar coordinates and hence find f_r , f_θ , f_φ .
 - b. Express $\vec{f} = x\hat{i} + y\hat{j} + z\hat{k}$ in cyclindrical co-ordinates system and hence find f_{ρ} , f_{φ} , f_{z} .

PART-D

Answer any TWO full questions.

 $(2 \times 10 = 20)$

Form the partial differential equation by eliminating arbitrary function from 10.

$$z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$$

Solve: $p^2 + q^2 = x + y$.

(OR)

Solve: $[D^2 + 5DD' + 4(D')^2]z = \cos(4x + y)$. 11. a.

Solve: $p^2 = z^2(1 - pq)$. b.

Solve by charpit's method px+qy=pq. 12. a.

> Solve: $(D^2 - 2DD' + (D')^2)z = e^{x+2y}$. b.

> > (OR)

A tightly stretched string with fixed end points x = 0 and x = 1 is initially in a position 13. given by $y = y_0 \sin^3\left(\frac{\pi x}{R}\right)$. If it is released from rest from this position, find the displacement y(x,t).

Solve: $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions

- i. u(0,t) = 0, u(1,t) = 0 for all t
- ii. $u(x,0) = x^2-x, 0 \le x \le 1$.

LIBRARY

BMSCW LIBRARY